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Abstract 

We describe the item modeling development and evaluation process as applied to a quantitative 

assessment with high-stakes outcomes. In addition to expediting the item-creation process, a 

model-based approach may reduce pretesting costs, if the difficulty and discrimination of model-

generated items may be predicted to a predefined level of accuracy. The development and 

evaluation of item models represents a collaborative effort among content specialists, 

statisticians, and cognitive scientists. A cycle for developing and revising item models that 

generate items with more predictable statistics is described. We review the goals of item 

modeling from different perspectives and recommend a method for structuring families of 

models that span content and generate items with more predictable psychometric parameters. 

Key words: Item model, item family, automatic item generation, cognitive analysis, mathematics 

assessment 
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Introduction 

A model-based approach to generative testing has the potential for enhancing both 

efficiency and validity (Bejar et al., 2002). We begin this paper by defining background 

terminology and giving simple examples of item models; this is followed by a review of the 

advantages of using a model-based approach to test development. Design practices that address 

security issues are also discussed. 

Next, we describe an effort to develop a set of model-based, automatically generated 

mathematics items with predictable statistical characteristics. When using a model-based 

approach, the greatest gains in efficiency are conferred when it is possible to predict the 

statistical characteristics of the items with some degree of accuracy, since this may eliminate the 

need to collect statistics for each item individually (Steffen, Graf, Levin, & Robin, 2005). There 

is a second reason why the accurate prediction of item statistics is a useful goal: It requires a 

thorough understanding of the features that contribute to item complexity, which is valuable 

information for test developers and researchers in the long run. 

Generating items with predictable statistics can be challenging and less than 

straightforward. Item modeling depends upon a thorough analysis of the underlying assessment 

domain (Bejar, 2002). Conducting such an analysis is necessary to generate a set of items that 

addresses a specified set of skills, but in complex domains, it is only the first step in developing a 

set of items at predictable levels of difficulty and discrimination. In this paper, we define a 

process for developing and revising sets of automatically generated mathematics items with more 

predictable statistical characteristics. The item-model development process is iterative and 

represents a collaborative effort on the part of test developers, statisticians, and cognitive 

scientists. The process was developed for use in the context of an assessment with high-stakes 

outcomes; however, some steps may be applicable to low-stakes assessment contexts as well. 

Item Models: Background and Terminology 

Hively, Patterson, and Page (1968) used the term item forms to refer to classes of items 

that assess the same subject matter and share a set of explicitly defined formats and mathematical 

relationships. They developed a number of item forms to characterize classes of basic arithmetic 

items. The term item model was introduced by LaDuca, Staples, Templeton, and Holzman (1986) 

to define classes of content-equivalent items. An item defined by an item model is sometimes 

referred to as an instance (Bejar et al., 2002). 
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Item models may be broadly defined or more narrowly defined. For example, “Find the 

sum of two positive common proper fractions, each of which has a denominator less than or 

equal to 10,” is a verbal description of a broadly defined quantitative item model. The instances 

2/4 + 2/3 = ?, 3/8 + 7/10 = ?, 1/4 + 2/5 = ?, 1/7 + 3/7 = ?, and 3/6 + 4/6 = ? are all included in this 

model. “Find the sum of two reduced positive common proper fractions with different 

denominators, each of which has a denominator less than or equal to 10,” is a more narrowly 

defined model that describes a smaller item space. This item model describes a set of instances 

that constitutes a proper subset of the set described by the broader model. The instances  

3/8 + 7/10 = ? and 1/4 + 2/5 = ? are included in this model, but the instances 2/4 + 2/3 = ?,  

1/7 + 3/7 = ?, and 3/6 + 4/6 = ? are not. Both example item models are represented in Table 1. 

Table 1 

Two Example Item Models 

Description of 
model 

Model template Variables and constraints Examples 

Find the sum of 
two positive 
common proper 
fractions, each of 
which has a 
denominator less 
than or equal to 10. 

Num1/Den1 + Num2/Den2 = ? Num1 is an integer s.t. 1 ≤ Num1 ≤ 9 
Den1 is an integer s.t. 2 ≤ Den1 ≤ 10 
Num2 is an integer s.t. 1 ≤ Num2 ≤ 9 
Den2 is an integer s.t. 2 ≤ Den2 ≤ 10 
Num1/Den1 < 1 
Num2/Den2 < 1 
Key = Num1/Den1 + Num2/Den2 

2/4 + 2/3 = ? 
3/8 + 7/10 = ? 
1/4 + 2/5 = ? 
1/7 + 3/7 = ? 
3/6 + 4/6 = ? 

Find the sum of 
two reduced 
positive common 
proper fractions 
with different 
denominators, each 
of which has a 
denominator less 
than or equal to 10. 

Num1/Den1 + Num2/Den2 = ? Num1 is an integer s.t. 1 ≤ Num1 ≤ 9 
Den1 is an integer s.t. 2 ≤ Den1 ≤ 10 
Num2 is an integer s.t. 1 ≤ Num2 ≤ 9 
Den2 is an integer s.t. 2 ≤ Den2 ≤ 10 
Num1/Den1 < 1 
Num2/Den2 < 1 
Key = Num1/Den1 + Num2/Den2 
Num1 and Den1 are relatively prime 
Num2 and Den2 are relatively prime 
Den1 is not equal to Den2 

3/8 + 7/10 = ? 
1/4 + 2/5 = ? 
 

Note. Variables are shown in italics. 

Although quantitative item models may be captured on paper, they can also be 

programmed into software. The same software may be used to automatically generate instances 

specified by the model (Singley & Bennett, 2002). Components of an item model that vary 

across instances are represented as variables. Statements that restrict the values that variables are 
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permitted to assume are called constraints. The variables and constraints used in the fraction 

addition examples are shown in the third column of Table 1. Both models use the same set of 

variables: four integer variables that represent the numerators and denominators of each of the 

two addends (Num1, Den1, Num2, Den2), and a fraction variable that represents the key (Key). 

Similarly, both models share three constraints: (Num1/Den1 < 1, Num2/Den2 < 1, and Key = 

Num1/Den1 + Num2/Den2). The first two constraints ensure that the addends are less than 1. The 

last constraint defines the key. The narrower model includes three additional constraints: Num1 

and Den1 are relatively prime, Num2 and Den2 are relatively prime, and Den1 is not equal to 

Den2. The first two additional constraints ensure that the addends are reduced fractions. The 

third additional constraint specifies that the denominators of the two addends must not be equal. 

As mentioned earlier, the narrower model describes a set of instances that constitutes a 

proper subset of the set described by the broader model. The two models are very similar; in fact, 

the only difference between them is that the narrower model includes three additional 

constraints. Similar item models are often grouped into item model families. Often, item models 

in the same family share variables, constraints, or both. Item models in the same family may 

share a common mathematical structure but vary with respect to their surface features, or vice-

versa. 

Advantages of Using an Item Modeling Approach in a High-Stakes Assessment Program 

Using a model-based approach in testing programs with high-stakes outcomes may 

enhance efficiency and validity; security issues may be addressed through appropriate design 

practices. 

Efficiency. Because an item model can be used to automatically generate a large number 

of instances, a model-based approach to item development is a potentially economical solution to 

meeting item demands (Bejar et al., 2002). Item modeling may enhance efficiency in at least two 

different ways. First, automatic item generation has the potential to lower the cost of item 

development. While it is more time-consuming to develop an item model than an item, the 

development cost per unit item may be lower, assuming the model generates a large number of 

instances. 

Second, a model-based approach may lower pretesting costs. Ideally, quantitative item 

models are based on an underlying problem structure or schema (Singley & Bennett, 2002). If it 

is possible to predict the item parameter estimates of an instance based on its item model 
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structure, it may not be necessary to calibrate every instance individually; rather, information 

about how difficulty is related to item model variables may be used to predict item parameter 

estimates for instances in advance (e.g., Bejar, 1993; Bejar, 1996; Bejar et al., 2002; Bejar & 

Yocom, 1991; Embretson, 1999). Enright, Morley, and Sheehan (2002) used item models to 

assess the impact of item design features on difficulty and discrimination. For rate word 

problems, feature variation accounted for 90% of the variance in difficulty and 50% of the 

variance in discrimination; for probability problems, feature variation accounted for 61% of the 

variance in difficulty but did not explain the variance in discrimination. This suggests that it is 

possible to use item features to successfully predict item difficulty. As noted by Enright et al., 

however, the feasibility of using item features to predict difficulty should be explored for many 

other mathematics topics as well. More recently, there have been additional evaluations of the 

feasibility of predicting item parameters of instances generated from quantitative models 

(Sinharay & Johnson, 2005; Steffen et al., 2005). 

Generative response modeling and its relationship to validity. Generative response 

modeling (Bejar, 1993; Bejar, 1996; Bejar & Yocom, 1991) is an approach that relates 

generative principles to psychometric properties. A generative response model not only specifies 

how an instance should be produced, it also specifies how the generating features are related to 

item difficulty and discrimination. Ideally, an item model is also a generative response model—it 

should specify the relationships between its features and the psychometric properties of the 

instances it generates. In the context of our discussion about quantitative item models, this means 

describing how the variables and constraints specified in the model relate to the difficulty and 

discrimination of the instances. 

Irvine (2002) makes a distinction between radical and incidental item elements. In an 

item model, a radical is a variable that affects the psychometric characteristics of the instances, 

and an incidental is a variable that has no detectable effect on the psychometric characteristics. A 

numeric variable that influences the computational complexity of an item is most likely radical, 

but a variable that is replaced by a random text string (for example, the name of a person in a 

word problem) is most likely incidental. A constraint may be used to mediate variable effects. 

For example, perhaps it is expected that computations involving the numeric variable N will be 

comparable in difficulty, unless N assumes a value divisible by 10. If a constraint is written so 
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that N cannot be divisible by 10, it is expected that the variable N, in combination with the 

constraint, will be incidental rather than radical. 

Returning to the fraction example, a test developer may anticipate that adding fractions 

with different denominators will be more difficult for an examinee than adding fractions with 

like denominators; in other words, the relationship between the denominators is a radical 

element. In the context of the broader model, this implies a prediction: On average, instances 

with different denominators will likely be more difficult than instances with like denominators. 

In the context of the narrower model, this intuition is operationalized as a constraint. The 

narrower model is designed to generate instances that vary less in difficulty; at least, any 

variation in difficulty is not due to whether or not the addends share the same denominator since 

they never will by definition. Although the broad and narrow models are defined differently, 

both may be considered generative response models, because we have incorporated expectations 

for how generating principles may influence difficulty. 

Bejar (1993) and Bejar and Yocom (1991) have argued that a careful accounting of the 

item model features that contribute to item difficulty lends validity to an assessment, and that 

generative response modeling provides a systematic framework in which to explore the 

determinants of item difficulty. In the fraction examples, we assume that adding fractions with 

different denominators is more difficult than adding fractions with the same denominator. If this 

is true, the level of performance on instances in the former category should on average be lower 

than the level of performance on instances in the latter category. To the extent that this feature is 

a relatively important determinant of difficulty, the variability in performance among instances 

in the broadly defined model should significantly exceed the variability among the instances in 

the narrowly defined model. If this hypothesis is not confirmed, it allows for the possibility that 

there are other variables that were not considered that are relatively more important for 

explaining difficulty. There are many other variables that might be considered in defining 

fraction addition item models. Hively et al. (1968) distinguished among numerous fraction 

addition item forms with different properties, including addends with the same denominators, 

relatively prime denominators, one denominator a multiple of the other, and denominators with a 

common factor. Further, they characterized forms with mixed numbers, forms with sums less 

than 1, and so on. Any one of these forms could be represented as an item model by including 
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the appropriate subset of constraints. For example, the constraint Key < 1 could be added to a 

model so that it would only generate instances with sums less than 1. 

The preceding discussion suggests two alternative (and possibly complementary) 

methods for using item models to identify factors that affect difficulty. The first method is to 

design broadly defined item models, but also to develop corresponding cognitive and 

measurement models that are sufficiently complex to explain the psychometric variability among 

the instances. The second method is to constrain the item models so that the performance 

characteristics of the instances within each model are relatively uniform. Bejar (2002) and Bejar 

and Yocom (1991) characterize the second method as a special case of the first method. 

Instances with predictable variation in their psychometric parameters are called variants; 

instances with similar psychometric parameters are called isomorphs (Bejar, 2002). Another 

characterization of the second method is that radical variables are used across models, but only 

incidental variables are used within models. Meisner, Luecht, and Reckase (1993) investigated 

the statistical comparability of mathematics instances that were generated from the same 

algorithm (an algorithm is an item model that generates instances that share a common 

mathematical structure). They found that many algorithms generated instances with similar 

statistics, but that a few did not. 

Whether an item model is designed to generate variants or isomorphs, an explanatory 

mechanism that accounts for the psychometric characteristics of the instances supports validity 

evaluation, because it makes it possible to demonstrate empirically an understanding of the 

features that contribute to item difficulty and discrimination. Ideally, any radical elements 

included in an item model are relevant to the target skill. If instances of an item model 

appropriately measure the target skill, it should be possible to keep the level of unexplained 

performance variability to a reasonable minimum. In the case where an item model is designed to 

generate isomorphs, it should be possible to keep the psychometric parameters constant, if the 

item model variables that influence them are thoroughly understood (Embretson & Gorin, 2001). 

In order to assist the item model design process, a framework such as evidence-centered 

design (Mislevy, Steinberg, & Almond, 2002) may be used. This approach to assessment design 

is founded on the assumption that tasks, scoring, and the reasoning that links them should be 

based on a thoughtful specification of the construct that the assessment is intended to measure. 

The interrelationships among the requisite student proficiencies for an assessment are 
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represented in a proficiency model. Shute, Graf, and Hansen (2005) used the evidence-centered 

design approach to develop a proficiency model for a middle school–level mathematics unit on 

arithmetic, geometric, and other common progressions. They then authored item models to 

correspond to the skills represented in the proficiency model. Although an approach like 

evidence-centered design can guide the item model design process, it does not provide a 

guarantee that all performance variability among the instances will be accounted for: The 

expectations for the psychometric parameters of the instances must be empirically evaluated. 

Test security. If it is possible to design an item model that generates instances with 

constant item parameters, the instances are effectively exchangeable. If an instance can be 

replaced with another instance of the same model, this will reduce the overexposure of 

administered items and enhance test security. There is reason for caution, however. Since 

isomorphic instances are based on a common problem structure, it is possible that they are more 

recognizable than discretely authored items. Instances that are programmed on a computer may 

share incidental but systematic relationships among the modeled components, some of which 

may be construct-irrelevant. If such relationships are discernable, construct-irrelevant, and 

correlated with the key, this presents a security concern as increasing numbers of instances from 

a model are administered. This concern is expressed as the degree to which item models may be 

coachable. 

Fortunately, some of this concern may be alleviated through the careful design of item 

models and may even be counteracted. Morley, Bridgeman, and Lawless (2004) designed models 

that generated isomorphs and models that generated appearance variants. The former models 

generated instances that were similar in difficulty and shared a common mathematical structure; 

the latter models generated instances that looked similar with respect to their surface features, 

but varied in terms of their mathematical structure (i.e., it would be necessary to use alternate 

mathematics procedures to derive a correct response). In the study by Morley et al., all 

participants were administered the same posttest (comprised of the same set of base items), but 

the composition of the pretests they were administered was different. Each base item on the 

posttest was paired with a corresponding item on a pretest. There were three types of pairs: (a) 

isomorphic pairs, (b) appearance variant pairs1, and (c) difficulty-matched pairs (these were 

items that were similar in difficulty and measured the same general mathematical skills, but 

required different solution strategies and were completely different superficially). Across the 
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pretest and the posttest, some participants saw isomorphic pairs and matched pairs only; the 

other participants saw all three types: isomorphic pairs, matched pairs, and appearance variant 

pairs. Morley et al. found that participants performed better on items for which they had seen 

isomorphs, but the inclusion of appearance variants on the pretest diminished this effect. They 

concluded that including both types of modeled instances on tests might discourage examinees 

from attending to the construct-irrelevant features of item models. A more in-depth study of 

whether long-term coaching may have an impact on item model security has yet to be conducted. 

Now that we have defined the necessary background terminology and discussed some of 

the advantages of an item modeling approach to assessment design, we describe an effort to 

develop a set of models, and a process by which item models may be developed and revised.  

Project Overview 

In this paper, we describe a process that may be used to design and revise quantitative 

item models. The process was developed in the context of a research project, the goal of which 

was to design a set of item models that would generate psychometrically equivalent (isomorphic) 

multiple-choice instances for use in unscored quantitative sections of the Graduate Record 

Examination® (GRE®). Item models can be designed for either high-stakes or low-stakes 

applications, but here we focused on item models designed for use in assessments with high-

stakes outcomes. The development effort that was the basis for this report is described in Steffen 

et al. (2005). Development spanned four mathematical content areas (linear inequalities, 

probabilities, remainders, and quadrilateral perimeters). In each of these content areas, a model 

was developed at each of four levels of difficulty (easiest, moderately easy, moderately hard, and 

most difficult), making sixteen models. Ten multiple-choice instances were generated from each 

of the 16 models and inserted into unscored test sections. Although the sections were 

administered internationally, the analysis sample consisted of U.S. citizens for whom English is 

the best language. Examinee responses were scored as correct or incorrect, and the response 

scores were fitted to a three-parameter logistic (3PL) IRT model (Birnbaum, 1968). Some of the 

models generated instances with similar item parameter estimates, but others generated instances 

with highly variable item parameter estimates. 

We will first describe the item model development process from the perspective of a test 

developer who participated in the process. Next, we will describe an approach to identify some 

of the cognitive and mathematical features that may account for the observed psychometric 
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variability among the instances of the item models, and how to revise the models to reduce the 

variability. Finally, we will recommend an approach for developing isomorphic instances while 

maintaining sufficient variability in item content. 

Developing Item Models: A Test Developer’s Perspective 

This section describes item modeling from the perspective of a test developer responsible 

for creating multiple-choice questions for tests with high-stakes outcomes. The following issues 

are covered  

• How can test developers use item modeling to create large numbers of test questions that 

assess the same mathematical concepts? 

• How can test developers use item modeling to create large numbers of test items at 

predictable levels of difficulty and discrimination? 

• What are the efficient processes that can be used for item model creation, item model 

review, and item (instance) review? 

• What are the challenges associated with item modeling? 

When the decision has been made to use item models in a test with high-stakes outcomes, 

a process for the development of models must be established. 

The Item Model Development Process: An Overview 

After the decision to model items has been made, test developers choose items and types 

of items that are most suitable for item modeling. Groups of related items are examined and 

analyzed, as part of a preliminary construct analysis. It is not a requirement, but often one or 

more exemplar items are chosen as the basis for an item model. Such an item is called a source, 

or base item. A candidate source item should be evaluated in terms of its mathematical and 

cognitive properties, to ascertain whether it lends itself to rendering many variations. If the 

number of possible variations is too small, then that item may not be a suitable source item 

because it is not cost effective to design a model that generates only a small number of instances. 

A source item is often selected in accordance with particular psychometric criteria. This is 

possible because source items are usually selected from a pool of previously pretested items for 

which comprehensive item-level statistics are available. 

An item model should be designed to capture the underlying mathematical structure 

implicit in the source item. The incidental features of the source item may be varied across the 
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instances of the model, but mathematical relationships in the source item that are considered 

important to retain are constrained in the item model. A test developer begins by deciding which 

parts of a model should be varied across instances and what the relationships among variables 

should be. Usually the model is sketched out on paper first; later the variables and constraints 

may be programmed into an automatic item generation program. 

An important aspect of multiple-choice item model development is to capture students’ 

approaches to solving problems and to represent common misconceptions among the options. 

Since the distribution of examinee responses across options is usually available for source items, 

popular misconceptions can often be identified. For example, suppose the stem of a source item 

for a multiple-choice fraction addition model is 1/3 + 2/7 = ?, and a large proportion of 

examinees choose the option 3/10. The test developer may decide to incorporate this 

misconception into the corresponding item model by representing one of the distractors as the 

sum of the numerators divided by the sum of the denominators. This ensures that an option that 

represents this misconception will appear in every instance generated by the model. 

Once the model has been developed, one or more test developers review it to ensure that 

it is both correct and consistent with the goals of the construct analysis, reviewing the model 

itself as well as samples of the instances it generates. At this point, the developer edits the model 

in accordance with reviewers’ suggestions; additional cycles of reviewing and editing may be 

warranted. When a model is complete, a sample of its instances is automatically generated for 

use in an unscored section. Content specialists review each instance for accuracy and clarity. 

Minor formatting changes are often made directly to the instances; more substantial changes may 

require that the model is changed and that a new sample of instances is generated. 

Once the model has been approved and the instances are finalized, the instances are 

assembled into unscored sections and administered. After the raw response data is collected, 

statistics are computed, including classical item statistics and item response theory (IRT) 

parameter estimates for each of the modeled instances. As part of a retrospective cognitive 

analysis, we use these statistics to hypothesize the influences of various item features. In this 

analysis, we attempt to relate the differences among instance statistics to differences among 

instance features (i.e., stem or distractor differences). The results of this analysis are used either 

to revise the item model or simply to explain any significant statistical variability among the 

generated instances. By treating each item model revision as an experiment and by exploring 
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how modeled distractors influence difficulty, we develop an enhanced understanding of students’ 

interpretations, strategies, and performance. The item model development and analysis process is 

summarized in Figure 1. 

Design and Develop
Item Model

Generate Instances

Pretest Instances

Revise Item Model

Finalize Model

Sample Instances

Select Suitable
Source Item(s)

Conduct
Cognitive Analysis

Analyze Construct

Conduct
Statistical Analysis

Review Instances

Review Model

 

Figure 1. Item model development and analysis loop. 

Although the process described here is workflow oriented, it shares many parallels with 

Embretson’s cognitive design system approach (e.g., see Embretson, 1999; Embretson & Gorin, 

2001). The initial construct analysis is analogous to the develop-cognitive-model phase of 

Embretson’s cognitive-design system approach. In this context, developing the cognitive model 

means making explicit the cognitive variables that are central to the source item(s), so that an 

item model that generates isomorphic instances may be constructed. During an initial construct 

analysis, a team of test developers discusses the appropriate content, reviews similar items in the 

operational pool, analyzes the source item(s), and develops a model designed to generate 

isomorphic instances. 
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The Item Model Development Process: An Example 

Selecting or inducing a suitable source item. The first step in the item modeling process 

is to review large numbers of items and find items that may generate large numbers of similar 

instances. Often, a single source item serves as the basis for the design of an item model. 

Sometimes, the item is modified before it is modeled. Occasionally, features from several 

different items are combined, and a source item is induced. The example here uses a source item 

involving an income tax scenario (see Figure 2). 

 

 

 

 

Figure 2. Source item. 

Analysis has shown that about 60% of GRE General Test examinees correctly solve 

problems of this type, and scores on items of this type correlate well with the rest of the 

quantitative exam. This item is therefore a good source for an item model of medium difficulty. 

We will next create an item model designed to generate instances that assess the same 

mathematical content and have similar psychometric properties. 

What is the mathematical content being assessed? This item assesses the mathematical 

concepts of graduated rates, calculations with percentages, and algebraic manipulation. In this 

example, the scenario concerns taxes; for the model we retain the surface features and variabilize 

the values in the problem (see Figure 3). 

 

 

 

 

 

Figure 3. Item model based on the source item in Figure 1. 

In a certain state, for taxable incomes over $20,000, income taxes are calculated as 9 percent 

of the first $20,000 of taxable income plus 15 percent of the amount greater than $20,000. If 

the taxes calculated for a certain taxable income were $2,100, what was the taxable income?

In a certain state, for taxable incomes over $y, income taxes are calculated as  

r percent of the first $y of taxable income plus t percent of the amount greater than $y. If the taxes 

calculated for a certain taxable income were $w, what was the taxable income? 
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Multiple instances from this model can be generated by replacing the variables with 

appropriate values. There may be several ways of representing this item, but for the purpose of 

this model we use variables r, y, t, and w to set up and solve the equations as shown in Figure 4. 

 

 

 

 

 
 

Figure 4. Equations used for the purpose of finding appropriate numbers for model. 

Modeling the stem. In creating the model for a real-life scenario such as this, it is 

important to ensure that the values for the variables are realistic, the answers are reasonable, and 

the grammar in the stem is correct. In Figure 5, we define the variables r, y, t, and w and set the 

constraints. 

 

 

 

 

 

 

 

 

 

Figure 5. Establishing variables and constraints. 

Modeling the distractors. One of the challenging parts of building a model to generate 

multiple-choice instances is developing formulas for the distractors. As we will see, the cognitive 

analysis shows that choice and placement of the distractors are often key factors that determine 

the difficulty of the item. The presence or absence of attractive distractors, usually representative 

Let α be the taxable income, 
100

r
x = , and 

100

t
z = ,  

then ( )xy z y wα+ =−  

Solve for α , 
w xy zy

z
α

− +
=  

r is an integer such that 0 < r ≤ 10. 

y is an integer divisible by 5,000 such that 10,000 ≤ y ≤ 30,000. 

t is an integer such that 11 ≤ t ≤ 15. 

100
rx = , and 

100
tz =  

w is an integer divisible by 1,000, such that xy < w ≤ 10,000. 

Then the key is w xy zy
z

α − +
= , α  should be an integer. 
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of common misconceptions, can greatly affect the examinees’ responses to an item. Also, the 

distractors have to make sense in the context of the instance. 

The instances also have to adhere to the conventions of a multiple-choice exam; if the 

distractors and the key are numeric they should be listed in ascending or descending order. The 

key should appear in different positions across the various instances so that the model has a 

lower risk of being coachable. Example formulas to represent distractors for the tax scenario 

include: 

• α + 10,000 

• α - 10,000 

• w xy zy
z

+ +  

• xy + w 

Can we vary the scenario? The surface features of a source item can be varied to generate 

more instances. In this case, another problem type involves sales commissions (see Figure 6). 

 

 

 

 

 

Figure 6. Item with varied surface features. 

Note that the mathematical structures for the models in Figure 3 and Figure 6 are the 

same. We give the examinees numbers for r, y, t, and w and ask them to set up and solve the 

same equation as above. As before, we adjust the values of the variables and distractors as well 

as the grammar, to make sense in the context of the sales commission problem. 

Item modeling as a collaborative effort. The process for item modeling is collaborative. 

Teams of test developers work together to choose the source items, to create and review the 

models, to discuss the choice of distractors, and to review the instances that will be used on the 

tests. In our experience, a team of three to four people is the ideal size for the efficient creation 

and review of the models. 

At a certain company, commissions on total sales over $y are calculated as  

r percent of the first $y of sales plus t percent of the amount of sales greater  

than $y. If a salesperson’s commission was $w, what were the salesperson’s total sales? 
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Once the instances are generated and reviewed, they are placed in unscored sections. The 

sections are administered and statistics are collected. Cognitive scientists and test developers 

then study the statistics of all the instances of a model to see if the instances preserve the 

difficulty levels of the source items. If the difficulty varies, we try to determine which factors are 

causing the variability. After the cognitive analysis, the models are often revised or modified and 

new instances are generated to incorporate the features uncovered in our analysis. 

This example demonstrates the thinking process involved in item model development. 

What we learn through the process of developing and analyzing item models can also be applied 

to discrete item writing. From an operational standpoint, the main goal of item modeling is to 

efficiently produce test items that are focused on assessing particular mathematical skills at 

specified levels of difficulty, but an additional benefit is that we learn more about which item 

features contribute to difficulty and discrimination. 

Designing Item Models That Are Appropriate for the Purpose of the Assessment 

From an assessment standpoint, an item model is most useful when it can generate 

instances that are informative with respect to the skill of interest. Item models may be designed 

for either high-stakes or low-stakes applications, but the criteria for successful design are 

somewhat different. For high-stakes applications like admissions testing programs, item models 

should be designed to generate instances that satisfy the psychometric criteria established by the 

testing program. For low-stakes applications like diagnostic assessments, item models should be 

designed to generate instances that capture common student misconceptions, so that they can be 

subsequently addressed through instruction. 

In the previous section of this paper, we discussed how item models are conceptualized 

and developed. Once a model is complete, a sample of its instances is generated, administered, 

and evaluated with respect to the original goals for the model (in this case, to generate 

isomorphic instances). 

In this section, we focus on the iterative aspect of item model development: After item 

models are developed, if they do not suit the purpose of the assessment for which they were 

designed, they are analyzed and revised. We describe the approach in the context of assessments 

with high-stakes outcomes, but it may be applied in contexts with low-stakes outcomes as well. 

Designing item models that satisfy the psychometric criteria. For testing applications with 

high-stakes outcomes, an item model should generate instances that effectively discriminate 
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between low- and high-performances and are not easy to answer by guessing. Typically, in order 

to be included in a test, the discrimination parameter estimate (a) for an item must exceed a 

minimum acceptable value, and the “guessing” parameter estimate (c) must be lower than some 

maximum acceptable value. The item difficulty parameter estimate (b) may vary, but it should 

fall within a certain range (at least some examinees should be able to answer it, but not all 

examinees should be able to answer it). An item model that generates a large number of 

instances that meet these psychometric criteria therefore has a high effective yield, in the sense 

that it generates a large number of instances that may be incorporated into an assessment. 

Incorporating Item Difficulty Predictions Into Item Model Development 

In item model design, there are two alternative approaches that may be employed to 

systematically control difficulty. As mentioned earlier, Bejar (2002) makes a distinction between 

models that are designed to generate isomorphic instances versus models that are designed to 

generate variants. Isomorphs are instances that are equivalent in every way except with regard to 

their surface features. They are considered exchangeable; they share the same psychometric 

properties and problem structure, or schema. Variants within a model show systematic variation 

with regard to a particular characteristic and are generally not exchangeable. For example, a 

model may be designed to generate variants of different levels of difficulty (Bejar, 2002). The 

distinction between isomorphs and variants is the psychometric analog to Reed’s conceptual 

distinction between isomorphic problems and similar problems, respectively (Reed, 1999). 

A thorough specification of how item features influence difficulty is not easily obtained. 

In practice, it is challenging to design item models that generate either isomorphs or variants 

with predictable psychometric parameters. Experts’ predictions about which factors contribute to 

item difficulty are not always accurate (e.g., Bejar, 1983; Camerer & Johnson, 1991; Nathan & 

Koedinger, 2000; Nathan, Koedinger, & Alibali, 2001; Nathan & Petrosino, 2003). In 

quantitative domains, alterations that seem insignificant to an expert can make instances easier or 

more difficult to the novice who may apply weaker, less general solution strategies. Weaker 

solution strategies can sometimes be less obvious to experts, a phenomenon Nathan et al. and 

Nathan and Petrosino referred to as the expert blind spot. Two items that appear equally difficult 

to the expert may appear quite different to the examinee. Many researchers in cognitive 

psychology and mathematics education have identified features that influence item difficulty in 

many quantitative areas. For example, the determinants of difficulty have been explored for 
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algebra problems (e.g., Embretson, 1995; Enright et al., 2002; Enright & Sheehan, 2002; 

Heffernan & Koedinger, 1998; Koedinger & MacLaren, 2002; Koedinger & Nathan, 2004; 

Mayer, Larkin, & Kadane, 1984; Sebrechts, Enright, Bennett, & Martin, 1996), proportional 

reasoning problems (e.g., Kaput & West, 1994 ; Karplus, Pulos, & Stage, 1983; Noelting, 1980; 

Vergnaud, 1980), arithmetic word problems (e.g., Enright et al., 2002; Kintsch & Greeno, 1985; 

Riley & Greeno, 1988), and quantitative reasoning items with more than one correct response 

(Bennett et al., 1999; Katz, Lipps, & Trafton, 2002). 

In summary, item models are designed to generate instances that target the skills of 

interest. A model that generates isomorphic instances is particularly applicable to large-scale 

assessments for at least three reasons. First, the assessment designers want to ensure that a given 

skill of interest is being measured accurately and uniformly across instances. Bejar (2002) noted 

that the use of isomorphic instances ensures better test reliability and score precision. Second, the 

cognitive framework required to explain the psychometric variability for a broadly defined item 

model is necessarily complicated, and in an operational setting, it is not feasible to develop such 

a framework for each item model that must be developed. Finally, it may be possible to save on 

pretesting costs if instances generated from an item model inherit its statistical parameters. 

Item Modeling as an Iterative Process 

Research findings from mathematics education and cognitive psychology may inform 

how to design item models that generate instances with somewhat stable or at least predictable 

psychometric characteristics. In our experience, however, the factors that influence difficulty, 

discrimination, and guess rate can be particular to a specific situation, and can often only become 

evident in retrospect after the statistics from administered instances are reviewed. Bejar (1993), 

Bejar and Yocom (1991), and Embretson and Gorin (2001) emphasize that item models must be 

evaluated empirically, and since evaluation will often implicate revision, item models that 

generate instances appropriate for the assessment should be developed iteratively. We therefore 

recommend a cyclical approach (as illustrated in Figure 1) to item model development: Instances 

from a model are reviewed and analyzed, and the model is revised so that it generates instances 

that are more likely to meet the established validity and psychometric criteria. 
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Statistical and Cognitive Analysis Applied to Item Modeling: An Example 

In this section, we describe how to analyze and revise an item model using the item 

model development loop. In this example, our goal was to design a model that would generate 

isomorphic instances, rather than variants. This section focuses on the conduct statistical analysis 

and conduct cognitive analysis steps in Figure 1 and corresponds to the model evaluation stage 

of the cognitive design system approach (Embretson, 1999; Embretson & Gorin, 2001). 

Figure 7 shows a discrete instance generated from the linear-inequality, most-difficult 

item model (one of 16 models developed in this effort); the key is indicated. 

 

 

 

 

 

 

 

 

 

Figure 7. Example of linear inequality item model instance. 

Ten instances were generated from the linear inequality item model; each instance was 

presented as the sixth item on a 28-item unscored section. Each examinee saw only one instance 

from the model. In the data analysis sample, the average number of examinees per instance was 

793. A 3PL IRT model (Birnbaum, 1968) with a scaling factor of 1.7 was fitted to the response 

scores. Table 2 shows the proportion correct and IRT parameter estimates for each of the model 

instances. The proportion correct across instances was highly variable (proportion correct ranges 

from .14 to .32). The IRT parameter estimates were also highly variable (a-parameter estimates 

range from .20 to 1.37; b-parameter estimates range from 2.52 to 4.10; and c-parameter estimates 

range from .05 to .26). 

The statement “t – 3 ≤ -1 or 3 – t ≥ 13” is equivalent to which of the following? 

 

A.  t ≤ 2  Key 

B.  t ≤ -10 

C.  -2 ≤ t ≤ 13 

D.  -9 ≤ t ≤ 3 

E.  -10 ≤ t ≤ 2 
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Table 2 

Proportion Correct and Item Parameter Estimates for 10 Instances From a Linear Inequality 

Item Model  

Item parameter estimates  
Instance 

Performance 
class 

Proportion 
correct a b c 

7 Type 1 .14 0.40 3.46 0.05 

8 Type 1 .14 0.40 3.47 0.06 

6 Type 1 .15 0.89 3.31 0.14 

1 Type 1 .16 1.37 2.52 0.14 

2 Type 1 .16 1.16 2.55 0.13 

4 Type 1 .16 0.99 2.80 0.14 

9 Type 2 .26 0.20 3.89 0.05 

5 Type 2 .30 0.20 3.12 0.06 

10 Type 2 .30 0.49 4.10 0.26 

3 Type 2 .32 0.59 2.74 0.25 

The proportion correct data in Table 2 suggest that instances from the linear inequality 

model fall into two distinct performance classes. Instances with a lower proportion correct are 

labeled Type 1 and instances with a higher proportion correct are labeled Type 2. 

Figure 8 has two panels: Each panel shows the item characteristic curves (ICCs) for 10 

instances generated from an item model. The left panel shows the ICCs for an ideal item model; 

the right panel shows the ICCs for instances generated from the linear inequality model. The 

curves in the left panel almost overlap; there is very little area spanned by the curves. The 

instances generated from the ideal model are essentially isomorphic, because they share both a 

common problem structure (as defined by the item model) and similar psychometric properties. 

By contrast, as can be seen in the right panel of Figure 8, the ICCs for the linear inequality model 

do not appear to be isomorphic. Although the model was designed to generate similar instances, 

there appear to be at least two distinct performance classes. 
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Figure 8. ICC curves for models that generated instances with similar and variable 

psychometric properties. 

The two classes correspond to the performance types distinguished in Table 2 and are 

differentiated in Figure 9. 

The data in Table 2 and the curves in Figure 9 both suggest that the linear inequality 

model may have generated at least two classes of instances. These are emergent classes in the 

sense that they are not distinct by design—our intention was to design a model that would 

generate isomorphic instances. This kind of result has been observed before. Meisner et al. 

(1993, p.11) noted “…apparent clusters of p-values (mean item scores) for some of the 

individual algorithms.” The challenge at this point was to identify features of the instances that 

might account for the performance difference between the two types. As Meisner et al. did for 

algorithms with clustered p-values, we reviewed the linear inequality model for systematic 

variations in item structure and considered how the model might be revised. We will refer to 

instances that are associated with one of the two types as Type 1 and Type 2 instances, 

respectively. There are a number of variations that did not appear to be associated with 

performance, but Type 1 and Type 2 instances vary in one important way: They have slightly 

different sets of distractors.  

A model with isomorphic instances Linear inequality model 
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Figure 9. Two types of ICCs for instances in the linear inequality model. 

As mentioned previously, in addition to modeling variables in the stem, a test developer 

also models the key and the distractors. We will refer to a variable or a combination of variables 

that represents a key or a distractor as a key model or a distractor model, respectively. For a 

particular item model, the collection of distractor models is called the distractor model set, and 

the collection of distractor models and the key model is the option model set. The number of 

distractor models in the set may exceed the number of distractors that appear in a given instance 

generated from the item model. When this occurs, only a subset of the distractor models is 

represented in any discrete instance. The linear inequality model included five different 

distractor models, but only four were represented in each instance. 

Examples of Type 1 and Type 2 instances are shown in Figures 10 and 11. Each 

distractor has been labeled with the name of the distractor model that generated it, and equivalent 
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distractor models are designated with the same number. For example, Distractor Model 3 

generated option C in the Type 1 instance (Figure 10) and option B in the Type 2 instance 

(Figure 11). Two of the distractor models (1 and 2) correspond to suspected misconceptions; the 

nature of the misconception is summarized in parentheses. The two types do not have equivalent 

distractor model sets. In particular, all of the Type 1 instances were generated using Distractor 

Models 1, 2, 3, and 4. All of the Type 2 instances were generated using Distractor Models 2, 3, 4, 

and 5. 

 

 

 

 

 

 

 

 

 

Figure 10. Example of Type 1 instance. 

 

 

 

 

 

 

 

 

 

 

Figure 11. Example of Type 2 instance. 

Lower performance, mean proportion correct: .15 

 

The statement “t – 3 ≤ -1 or 3 – t ≥ 13” is equivalent to which of the following? 

 

A.  t ≤ 2   Key model (t ≤ 2 or t ≤ -10) 

B.  t ≤ -10  Distractor Model 2 (examinee interprets or as and) 

C.  -2 ≤ t ≤ 13  Distractor Model 3 

D.  -9 ≤ t ≤ 3  Distractor Model 4 

E.  -10 ≤ t ≤ 2  Distractor Model 1 (reversed inequality) 

Higher performance, mean proportion correct: .30 

 

x – 9 < -2 or 4 – x > 19 

 

The statement above is equivalent to which of the following? 

 

A.  –14 < x < 8   Distractor Model 4 

B.  –7 < x < 19  Distractor Model 3 

C.  x < -15  Distractor Model 2 (examinee interprets or as and) 

D.  x < 7   Key model (x < 7 or x < -15)  

E.  x < 19  Distractor Model 5 



23 

There are other differences between the two examples shown, including the stem format, 

the numbers used, and the order in which the distractor models appeared as distractors. Such 

differences were present within each type, however, and do not account for the performance 

difference between types. 

The main difference between the two performance classes is that the Type 1 instances 

include Distractor Model 1, and the Type 2 instances replace Distractor Model 1 with Distractor 

Model 5. We suspected that Distractor Model 1 (which appears in the Type 1 instances only) 

corresponds to a popular misconception, and therefore generates attractive distractors. Distractor 

Model 5, however, which replaces Distractor Model 1 in the Type 2 instances, may not be as 

appealing—upon consideration, it does not seem as likely that an examinee will select an option 

corresponding to Distractor Model 5. It should be noted that this analysis is retrospective—

without the benefit of item performance data, the instances from this model appear quite similar. 

There may be no strong a priori reason to believe that one distractor model is more compelling 

than another. 

If our interpretation concerning distractor models is correct, then the substitution of 

Distractor Model 5 for Distractor Model 1 might account for the variability among the instances. 

In order to further explore this idea, we looked at the percentage of examinees that endorsed each 

option generated by a particular distractor model. If Distractor Model 1 generates attractive 

distractors, then distractors that correspond to it should claim a large percentage of the responses. 

The percentage of examinees that selected options corresponding to each distractor model is 

shown in Figure 12; lines with square markers represent the Type 1 instances and lines with 

circle markers represent the Type 2 instances. The figure suggests that Distractor Model 1 

generated very attractive distractors; between 40–50% of examinees selected this option when it 

appeared, and it was much more popular than the key. Distractor Model 5, however, did not 

generate attractive distractors, perhaps because the model did not correspond to a popular 

misconception. Figure 12 also shows that Distractor Model 2, which corresponds to the and 

instead of the or interpretation of the stem, generates attractive distractors. A Distractor Model 2 

option is not as popular as a Distractor Model 1 option, but it is still more popular than the key. 
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Figure 12. Percentage of examinees that selected options generated by different option 

models on instances generated by the linear inequality model. 

For each of the two types, the options corresponding to the distractor models were 

presented in one of two sequences—half of the instances presented the options in one order, and 

the other half presented the options in the reverse order. This distinction is made on the graph in 

Figure 12; the dotted lines represent those instances for which the option models appeared in one 

order (A keys and B keys, for Type 1 and Type 2 instances, respectively), and the solid lines 

represent those instances for which the option models appeared in the reverse order (E keys and 

D keys, for Type 1 and Type 2 instances, respectively). None of the Type 1 curves overlap any 

of the Type 2 curves, but within each of the two types, curves corresponding to instances with 

different option orders are virtually indistinguishable. This suggests that it is the presence of a 

Distractor Model 1 option, and not its position, that affects performance. For this model, an 

option that represents Distractor Model 1 is likely to be endorsed by an examinee, regardless of 

where it appears among the options. 

It is important to note that these findings are limited to instances from this particular 

model. In fact, we have found that for some models, performance on the instances is highly 
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associated with the relative positions of the key model and the distractor models. For example, 

some items do not have unique solutions, and the answer is found by identifying the option that 

satisfies the constraints specified in the stem. Such items typically require that examinees test 

each option, and it is likely that the position of the key will affect performance on instances 

generated from models that have this problem structure.  

More generally, in different item models, different components may influence the 

variability of the instances. In the linear inequality example, even a slight difference in the 

composition of the distractor model set appears to play a very important role in determining the 

behavior of the instances. The potentially important role of distractor models for item generation 

has also been noted in other contexts. For example, Embretson and Gorin (2001) noted the 

important role of distractors as determinants of item difficulty for generating object assembly 

items. The stem of an object assembly item consists of scattered pieces. The task is to select the 

option that represents a whole object that is possible to assemble from the pieces shown in the 

stem. A similar observation has been made in the context of generating analytical reasoning 

items (Newstead, Bradon, Handley, Evans, & Dennis, 2002). Depending on the model, however, 

either features of the stem or features of the options may play the primary role. 

Completing the Cycle 

In addition to providing possible explanations for the variability among the linear 

inequality model instances, this analysis suggests a means for revising the model so that the 

instances are both isomorphic and more discriminating (i.e., have higher a-parameter estimates). 

This section focuses on revising the model and corresponds to the revise-item-model step from 

the item model development loop in Figure 1. 

To generate instances with more comparable statistics, a good first step is to constrain the 

model to generate only Type 1 or only Type 2 instances. The Type 1 instances are preferable 

because, in general, the discrimination value (IRT parameter estimate a) is higher and the 

guessing value (IRT parameter estimate c) is lower. An item model that generates only Type 1 

instances is likely to have a higher effective yield than an item model that generates only Type 2 

instances, because the instances are more likely to satisfy testing programs’ cutoff criteria for a 

and c values. To complete the item model development cycle, the linear inequality item model 

was constrained so that it would only generate Type 1 instances. This represents an attempt to 
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create an item model that generates instances with high discrimination values and low guessing 

values that are also similar in difficulty. 

We administered 32 instances from the revised linear inequality model. As before, the 

options appear in one of two orders (16 instances were generated for each order). A close 

inspection of Figure 9 shows that even within the Type 1 instances, there are two instances that 

have lower discrimination values (the two flatter curves in Figure 9). Because there are only six 

Type 1 instances, and only two of them have lower discrimination values, it is difficult to 

ascertain which item model variables may be responsible for the difference. Once we have data 

from the revised item models, we may be able to identify which item model variables affect the 

discrimination rates of Type 1 instances. 

For the linear inequality model example, we completed the cycle by revising the model in 

such a way that it should generate more closely isomorphic instances. This seemed 

straightforward to do in this case, because the item model variables contributing to performance 

are readily apparent. It should be mentioned that this is something of a singular case, however. 

Often, there are several item model variables that may affect how the instances behave, and often 

these variables are confounded. When this situation occurs, we take a different approach: We 

revise the model and systematically generate instances to isolate the potential effects of the 

confounded item model variables. When potential confounding is a concern, we attempt to 

generate variants at different levels of difficulty to better understand the influence of different 

item model variables. It should be noted that for a small number of models, the results may be so 

difficult to interpret that it is not possible to systematically generate instances even to test 

candidate hypotheses. In this event, we recommend redesigning the model from scratch. This 

involves reexamining the source item (and perhaps several others items like it) to determine what 

skills the item(s) were originally designed measure. It may be that the model instances vary in 

their parameters because they actually test slightly different skills. Once the underlying skills 

have been reevaluated, a new item model may be designed that is intended to preserve the 

rationale behind the development of the original source item(s). 

Caveats and Recommendations 

There are limitations to the approach we describe here. One obvious limitation is that it is 

time-consuming. Another limitation is that this approach is a model-fitting exercise; we are 

trying to make a generalization about a large set of instances (all the instances in a model) based 



27 

on a relatively small set of instances. It may be possible to develop an approach for sampling 

instances, however, since the instances vary in a systematic fashion. Another potential risk with 

this approach is that in the process of revising models, it is possible to introduce additional 

variables that may have unforeseen effects on performance. When this occurs, we try to 

compartmentalize models, so that only one new variable is introduced in each new model. 

In our discussion of the linear inequality model, it probably became clear that apparently 

small differences in the composition of the instances can have very large effects on performance, 

and we have observed that this is often the case with other item models as well. In order to 

develop item models that generate isomorphic instances, it may be necessary to constrain the 

models to a high degree. While this approach may help us to control the psychometric 

parameters, the downside is that it may significantly limit the variability of the instances 

generated by the model. As noted by Messick (1994), two major threats to construct validity 

include construct-irrelevant variance and construct underrepresentation. In the context of item 

model development, this presents a challenge: How do we control difficulty and discrimination 

and sufficiently represent the construct at the same time? If a set of item models is going to be 

practically useful, it needs to span a reasonable amount of content. Further, item models that 

generate instances that are too similar may be coachable. 

Fortunately, we believe there is a practical approach to item model development that 

avoids both threats to construct validity. Item models can be designed in a modular fashion, as 

parts of larger model families. It is not much more difficult to create a family of narrowly 

defined models than it is to create a single, broadly defined model, and defining families of 

isomorphic models gives us the capacity to control the psychometric parameters of the instances. 

Item models within a family that perform similarly may always be consolidated later on. It may 

be more appropriate to think of the item model family, rather than the item model, as the 

essential unit of development. Across families, it is possible to span many content areas. We 

therefore recommend that item models be developed as parts of families when possible. 

Conclusions and Questions for Further Research 

Questions for further research target improving the iterative approach to item model 

development, so that it is both more effective and more efficient. There are opportunities for 

improvement at almost every stage of the process. First, what strategies might be used at the 

outset, so that new item models are more likely to generate instances that suit the purpose of the 
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assessment? Although the results we have found so far are quite specific to the content from a 

particular model, some results may be generalizable. For example, as a general rule it may be 

extremely important to attend to distractor sets and how comparable they are across instances. 

Eventually, we may be able to compile a knowledge base consisting of both general and content-

specific information that test developers may consult prior to designing a new item model. At the 

very least, we should be able to define a set of best-practice guidelines for item model design, so 

that the effective yield is as high as possible. 

We may be able to make improvements to the sample-instances stage. The iterative 

approach is based on the assumption that it is possible to make generalizations about a model 

based on a small sample of instances generated by the model. It is not clear how many instances 

should be sampled, or how to select a representative sample. It also is not clear that the sample 

should be the same size for every model. In addition, samples may be generated randomly or 

systematically. Typically, when we first test a model, the sample consists of instances that have 

been generated randomly, with constraints to ensure that instances are not repeated. Once the 

model is revised, the sample usually consists of instances that have been generated 

systematically, in order to test the hypotheses of interest. Both methods for sampling instances 

are important—the former is important in order to identify unanticipated effects of item model 

variables; the latter is important to test candidate hypotheses. We should explore at what point in 

the process random versus systematic generation is preferable, or if both are included, how to 

define an optimal set of instances for testing. Finally, it may be possible to develop metrics that 

indicate when a model generates instances that meet the criteria established at the outset. These 

criteria will vary, depending on the purpose of the assessment for which a model is designed. But 

there should be objective measures of whether a model is sufficiently improved or whether it is 

likely to benefit from another iteration of the development cycle. 
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Notes 
 

1 As an example, if the base item showed a figure of a triangle and asked for the perimeter, the 

appearance variant would show the same figure but would ask for the area. 




